자동화 · 첨단화 지원사업
최종보고서

2018. 02

주관기업 : (주)신희에스티

한국생산기술연구원
국가뿌리산업진흥센터

제출문
[요약서]

■ 사업의 목표

- 열처리 후의 Insert Steel 좌면 자동화 연마 및 검사 시스템 개발
- 자동화 연마 공정을 통한 Insert Steel 좌면의 평탄도 연마 수작업을 대신함으로써 인력 손실, 생산성 향상 및 제해 유발 방지를 목표로 한다.

■ 사업 내용

- 사업의 중요성 및 효과
 • Insert Steel의 경도를 높이기 위해 열처리 공정이 필요한데 이 과정에서 3~4%의 부피량상으로 인해 이례한 열 변형 및 공기와의 접촉으로 인한 산화 발생으로 표면에 Scale이 생성
 • 미세하게 발생된 열변형에 대한 교정과 표면 정밀도가 요구되는 Insert Steel의 좌면, 분할면 등의 부분이 발생하는 Scale을 제거 및 형합률 95% 이상을 만족시키기 위해 연마공정이 필요
 • 당사 역시 Insert Steel 연마 시 각기 다른 형상면을 가지고 있어 좌면가공에 대한 진용장비 부재로 인해 작업자의 수작업으로 한 번의 작업으로 끝나지 않고 수십 번 반복하는 작업으로 진행
 → 작업자의 속련도에 따라 반복횟수 및 정밀도에 대한 평판도 오차범위가 각기 다르게 발생
 • Insert Steel의 무게는 적어도 20kg에 달하기 때문에, 작업자의 수작업을 통해 이루어지는 부분에 있어 안전성 고려 필요

- 구축 연속공정 자동화 시스템의 상세 개요
 • 다수의 Insert Steel의 좌면 연마 가공을 자동화 하고 공간 활용성 및 이동성이 용이한 대차 방식의 장비를 개발
 • 다양한 형상을 가지는 Insert Steel을 고정하기 위해 소재의 특성을 이용한 범용 작업 셋팅 장비 개발
 • 작업자가 원하는 가공 범위에 맞게 높은 정밀도가 보장되는 자동화 연마 가공 시스템 장비 개발
 • 가공 완료에 대하여 최종적으로 가공에 대한 평판도 측정 장비 개발

■ 사업추진 실적 및 성과

평가항목	단위	기존 공정	목표치	실적치	달성률 (%)	비고
생산성	UPH	1	3	3.3	110	외부기관확인서
평판도 편차	mm	0.1	±0.05	±0.009	182	공인기관성적서
평판도 측정 시간	sec	-	20	16.489	118	외부기관확인서
가공 대상물 경도	HrC	48-50	50 이상	56.48	113	공인기관성적서

*1. 생산성: 외부기관(대구기계부품연구원) 입회하여 시간당 생산량 UPH (Unit per Hour) 측정 수행
*2. 평판도 편차: 연마 가공된 Insert Steel 좌면의 위치별 평판도 측정 수행
 ※ 표준조도: 평판도의 목표치가 표준조도에 대한 측정 수행 대비
*3. 평판도 측정 시간: 외부기관(대구기계부품연구원) 입회하여 평판도 측정 시간 측정 수행
*4. 가공 대상물 경도: 열처리 후의 Insert Steel 제품을 절단하여 KS B 0811에 따라 경도 시험 수행

- 다수의 Insert Steel의 좌면 연마 가공을 자동화 하고 공간 활용성 및 이동성이 용이한 대차 방식의 장비를 개발
 - 수작업으로 진행 되던 연마 가공을 장비 내의 Setting Position에서 가공물을 위치 시켜 놓으면 장비 스스로 가공물을 작업대로 이송 시키는 구조 시스템 개발
 - 대차를 이용하여 가공물을 Setting Position에 위치시키므로 이동성이 용이하도록 유도

- 다양한 형상을 가진 insert Steel을 고정하기 위해 소재의 특성을 이용한 범용 작업 셋팅 장비 개발
 - 금형 자제의 형상이 다양하므로 좌면을 가공하기 위해서는 insert Steel 가공물이 넘어지지 않도록 고정시키는 범용 고정 장치 개발이 필요
 - 이를 가공물의 소재가 Steel이라는 점을 고려하여 마그네틱 장치를 이용해 하용 주파수 범위를 높여 Steel Ball을 이용한 가공물 범용 고정 장치 시스템 개발

- 작업자가 원하는 가공 범위에 맞게 높은 정밀도가 보장되는 자동화 연마 가공 시스템 장비 개발
 - X, Y, Z 축을 이용한 직교 장치의 연마 가공 구조 시스템을 개발
 - Setting Position에 위치한 가공물을 작업대로 자동화 이송 및 수평도 자동 맞춤으로, 연마 가공에 높은 정밀도로 진행 될 수 있는 시스템 개발
 - 수작업을 통해 가공 되었던 연마 공정을 자동화함으로써, 인력난비 촉발을 방지하고 작업 효율 증대

- 가공 완료에 대하여 최종적으로 가공에 대한 평판도 측정 장비 개발
 - 평판도 측정 셋시인 레이저 측정 장비를 이용하여, 작업 전 Setting 된 insert Steel의 좌면의 평판도 측정
 - 측정 시작점부터, 최종 지점까지 레이저 두 점이 지나가며, 높낮이를 측정해 가장 낮은 부분과 가장 높은 부분의 데이터를 가지고 가장 낮은 부분을 기준으로 하여 연마 가공 진행되도록 시스템을 구성

☐ 기대효과 및 보급확산 방안

<table>
<thead>
<tr>
<th>구분</th>
<th>개발 전</th>
<th>개발 후</th>
<th>성과</th>
<th>비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time</td>
<td>60min</td>
<td>18.13min</td>
<td>69.8% 단축</td>
<td>Cycle time 약 40분 단축</td>
</tr>
<tr>
<td>투입인력</td>
<td>1명 이상/EA</td>
<td>1명/EA</td>
<td>100% 감소</td>
<td>투입인원 손실 감소</td>
</tr>
<tr>
<td>평판 가공 정밀도</td>
<td>±0.1mm</td>
<td>±0.009mm</td>
<td>91.1%</td>
<td>고정밀도 보장</td>
</tr>
<tr>
<td>1일 가공 수량</td>
<td>8EA/일</td>
<td>24.3EA/일</td>
<td>203.8%</td>
<td>일 가공량 3.3배 증가</td>
</tr>
</tbody>
</table>

☐ 활용 고도화 방안

- 2016년 대구국가산업단지 내에 6천평 규모 부지를 매입 완료한 상태이며 2017년도에 신규 공장 설립을 통한 기업 확장 예정
- 이에 공장 확장에 따른 본 사업에서 개발되는 자동화 연마 장비 보급 투자 확산을 진행 할 예정
- 실 현장에 장비가 투입되어 작업자가 직접 운용하면서 불필요한 부분과 필요한 부분을 조사하여 지속적인 연구개발을 통해 장비 기능 향상 예정
- 보다 생산성을 향상시키기 위해 Insert Steel의 바닥면뿐만 아니라 측면부의 연마도 동시에 진행이 되도록 하고자 함
전문연구기관 및 대학 등 산학연 프로젝트를 통한 장비의 메커니즘을 응용하여, 다양한 분야에 적용할 수 있도록 지속적인 제품 연구 및 경쟁력 있는 핵심 기술을 확보하고자 한다.

- 사업 종료 후의 보급·확산 방안
 • 본 사업을 통하여 Insert Steel 용 자동화 연마 장비 개발을 통하여 작업자의 수작업 공정을 감소함으로써, 보다 안전을 고려하여 산업재해를 예방
 • 시스템의 실제 사용사례를 흡수하고 생산성 및 정밀도 항상 효과를 증명함으로써 동종기업으로 보급 및 산업간 동반성장 도모 예정
 • 본 사업에서 개발하는 장비와 관련한 각종 기술 전시회 등에 참가하여 기술 및 회사에 대한 홍보 예정

1. 사업 개요

1. 사업의 목적 및 필요성

○ 대상 기술·공정

- 당사는 자동차 PRESS 차체용 금형을 전문적으로 제작하고 있다. 일반적인 금형 제작 과정은 초기 예상 공정 및 성형성 등을 검토한 공정 설계도를 설계한 다음, 이를 바탕으로 컴퓨터 시뮬레이션을 통해 실제 공정 조건과 유사한 환경에서 성형성을 검토 한다. 성형성이 검증되면, 그 결과를 바탕으로 최종 금형제작 설계도를 도출 한 다음, 주물 (Die), 베이스플레이트 (Base-plate), 인서트스틸 (Insert Steel), 각 종 부속품들을 설계도에 맞게 제작 공정 진행이 이루어진다.

- 각 제작 공정 진행이 완료 되면, 조립 및 사상 공정을 통해 초기 금형 생산이 완료된다.

[그림] 프레스 금형 공정

○ 공정의 개요·핵심성·중요성

- Insert Steel 제작 공정은 금형이 제작되는 과정 중에서 가장 중요하고 정밀하게 이루어져야 한다. 그 이유는 Insert Steel이 생산하고자 하는 제품의 형상면을 나타내고 있으며, 제품의 품질에 가장 큰 영향력을 가지고 있기 때문이다. Insert Steel은 초기 정육면체의 Block으로 소재 발주 후, 면상을 통해 육면체의 면을 고르게 한다. 그 후 제작하고자 하는 성형 제품의 형상면을 형상해 통한 1차 가공을 한다. 초기 소재 발주 후의 Steel의 경도는 난간금형공구강인 STD11종 기준 HrC 27 수준이다. 이 경도 값으로는 안장강도 980MPa 급 이상의 초고장력강 (AHSS/UHSS) 성형과 Press 성형 과정 중의 높은 하중을 견디기에는 턱없이 부족한 경도 이므로, Q&T(Quenching & Tempering) 열처리를 통해 소재의 경도
를 HrC 50 수준까지 증가시킨다. 마지막으로 열처리 후 연마 작업 및 정삭, 편슬링과 같은 정밀 형상 2차 가공이 진행 되어야 최종적인 Insert Steel이 제작 완료 된다.

- Insert Steel의 경우를 높이기 위해 초기 풀림(Annealing)을 통해 확보된 페라이트(Ferrite) 및 펄라이트(Pearlite) 미세조직을 마르텐사이트(Martensite) 미세조직으로 변태하기 위해 900℃ 이상 가열하여 오스테나이트화(Austenitizing)한 후, 유냉(Oil Cooling) 및 약 2번의 포임(Tempering)을 통해 열처리를 진행하게 된다. 이 과정에서 3~4%의 부피팽창으로 인해 미세한 열 변형 및 공기와의 접촉으로 인한 산화 발생으로 표면에 Scale이 생성된다. 미세하게 발생된 열변형에 대한 교정과 표면 정밀도가 요구되는 Insert Steel의 좌면, 분할면 등의 부분에 발생되는 Scale을 제거하기 위해 연마공정이 필요하다.

[그림] STD11 Insert steel 제작 공정 및 표준 열처리 조건
기존 국내 양산 일반 Press 금형 제작에서는 Insert Steel 바닥면을 연마하는 도구가 없거나 적다. 이로 인해 점차 강화되고 있는 검사항목에 대해 대응하기에는 작업화의 노동 감소가 급격히 올라가고 있다. 특히 국내 수요처에서는 Insert Steel 바닥면의 정도가 85% 이상의 형합률을 요구하고 있으며, 해외 수주의 경우는 100%를 요구하고 있다.

앞으로는 업체에서는 검사항목에서 필요적으로 Insert Steel 바닥면 형합률이 고객이 요구하는 일정 기준 이상으로 맞추어야 하기 때문에, 일반 Press 업체들이 이를 해소하기 위해 여러 가지 방법을 모색하고 있다.

[그림] 85% 이상 형합률을 가지는 Insert Steel

- 당사 역시 Insert Steel 연마 시 각기 다른 형상면을 가지고 있어 좌면가공에 대한 진용장비 부재로 인해 작업자의 수작업을 통해 진행되고 있다.

- 작업 진행 방법은 약 500x400x300mm 크기의 Insert Steel을 들어 연마 하고자 하는 면을 광명단(Painting)이 묻어 있는 평탄 Steel에 문지를 후, 광명단이 묻어 나오는 부분을 연마하는 방식으로 평탄도 가공이 진행된다. 한 번의 작업으로 끝나지 않고 수십 번 반복하는 작업으로 이루어지며, 수작업으로 진행되기 때문에 작업자의 숙련도에 따라 반복횟수 및 정밀도에 대한 평탄도 오차범위가 각기 다르게 발생한다. 또한, Insert Steel의 무게는 최소 20kg에 달하기 때문에 작업자의 수작업을 통해 이루어지는 부분에 있어 안전성에 대해 고려할 필요가 있다.
- 평탄도 못지않게 표면조도 역시 제품의 합격여부에 영향을 주게 되나. 제품을 성형하는 형상면인 경우에만 표면조도 중요성이 높으며, 형상면이 아닌 Base-plate와 Insert Steel이 결합되어지는 좌면은 표면조도보다는 평탄도가 더 중요하다.

- 좌면에서의 표면조도는 연마면에 광명단(Painting)이 전제적으로 묻어나오는 여부의 자체가 고객사가 원하는 표면 조도 합격 제품으로 판단되므로. 표면의 조도는 정상적인 범위에서 문제가 되지 않으면 해당 작업에서는 면의 평탄도가 더 중요하다.

- 그렇기 때문에, Insert Steel의 좌면은 평탄도에 따라 조립에 대한 가능 여부가 결정되고, 또한 제품의 품질에 큰 영향을 미치게 된다.

[그림] 금형 구조 예시
○ 공정 도입에 따른 공정개선효과 요약

- 본 사업을 통하여 형상 가공(형식)된 열처리 후의 Insert Steel 좌면을 연마하는 자동화 공정 기계 장비를 개발하여, 수작업의 위험한 환경을 삭제함으로써 작업자의 안전을 보장할 수 있다. 뿐만 아니라, 생산성 향상과 불량률 감소 등 뿌리기업의 경쟁력 강화에 큰 도움이 될 것으로 판단된다. 아래의 표 1에 볼량 발생원인 및 공정 비교를 나타냈다.

- 자동화 기업과의 자동화 연마 장치를 공동 개발함으로써 뿌리기업의 경쟁력을 강화하고, 적은 투자비용으로 자동화 시스템을 개발하여 동종기업으로의 보급 및 산업간 동반성장을 도모하고자 한다.

<table>
<thead>
<tr>
<th>항목</th>
<th>기존 수작업 공정</th>
<th>자동화 공정</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>내용</td>
<td>비고</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>1hour/EA 이상</td>
<td>1시간 작업에 대한 인력손실이 급증</td>
</tr>
<tr>
<td>치수 편차</td>
<td>±0.1mm</td>
<td>수작업 특성상 고 정밀도 작업이 어려움</td>
</tr>
</tbody>
</table>

[표 1] 볼량 발생원인 및 공정 비교

2. 사업내용

○ 열처리 후의 Insert Steel 좌면 자동화 연마 및 검사 시스템 개발

- 다수의 Insert Steel의 좌면 연마 가공을 자동화 하고 공간 활용성 및 이동성이 용이한 대차 방식의 장비를 개발
- 다양한 형상을 가진 Insert Steel을 고정하기 위해 소재의 특성을 이용한 범용 작업 셋팅 장비 개발
- 작업자가 원하는 가공 범위에 맞게 높은 정밀도가 보장되는 자동화 연마 가공 시스템 장비 개발
- 가공 완료에 대하여 최종적으로 가공에 대한 평탄도 측정 장비 개발
3. 설비 도입 공정 요약

<table>
<thead>
<tr>
<th>진행 공정명</th>
<th>시행기간 (혹은 예정)</th>
<th>추진내용</th>
</tr>
</thead>
</table>
| 공정 설계 | 2017. 04 2017. 09 | → 장비 컨셉(모형제작, 가공물 가공물 수직등) 아이디어 구상
→ 성과지표 만족을 위한 장비 사양 설계 검토 |
| | | 환경변경 : 컨트롤코리아→가우스→에스지티 |
| 설비 제작 | 2017. 09 2017. 12 | → 마그네틱 자력 및 연마 테스트
→ 연마기 태이블 및 헤더 설치
→ 전기 설비 시스템 설치
→ 프로그래밍 설치 |
| (기계장치 등) | | (:예스지티) |
| 장비 설치 | 2017. 12 2018. 01 | → Out-Cover 및 구성품 설치
→ 각 파트별 연동 부분 확인 |
| (설치상의 에로 등) | | (:예스지티) |
| 시운전 | 2018. 01 2018. 01 | → 장비 작동 프로세스 및 주의사항 확인
→ 안전·경광등 추가 설치, 사용설명서 확인
→ 수정·보완 |
| (교육내용 포함) | | (:예스지티, (:예스지티) |
| 양산 시작 | 2018. 02 2019. 03 | → 시운전 및 장비운영 교육실시
→ 수정·보완 |
| | | (:예스지티, (:예스지티) |
II. 사업성과

1. 사업 목표

○ 최종목표

- 영처리 후의 Insert Steel 좌면 자동화 연마 및 검사 시스템 개발
- 자동화 연마 공정을 통한 Insert Steel 좌면의 평탄도 연마 수작업을 대신 함으로써 인력 손실, 생산성 향상 및 재해 유발 방지를 목표로 한다.

2. 구축 결과

○ 영처리 후 Insert Steel 좌면 자동화 연마 장비 개발

- 대수의 Insert Steel의 좌면 연마 가공을 자동화 하고 공간 활용성 및 이동성이 용이한 대차 방식의 장비를 개발
 - 수작업으로 진행 되던, 연마 가공을 장비 내의 Setting Position에 가공물을 위치시키고, 장비 스스로 가공물을 작업대로 이송시키는 구조 시스템 개발을 완료하였다. 또한, 대차를 이용하여 가공물을 Setting Position에 위치 시키므로, 이동성이 용이하도록 유도하였다.

- 다양한 형상을 가지는 Insert Steel을 고정하기 위해 소재의 특성을 이용한 범용 작업 셋팅 장비 개발
 - 금형 자체의 형상이 다양하다고, 좌면을 가공하기 위해서는 Insert Steel 가공물이 넘어지지 않도록 고정시키는 범용 고정 장치 개발이 필요하다. 이를 가공물의 소재가 Steel이라는 점을 고려하여, 마그네틱 장치를 이용해 허용 주파수 범위를 높여 Steel Ball을 이용한 가공물 범용 고정 장치 시스템을 개발하였다.

- 작업자가 원하는 가공 범위에 맞게 높은 정밀도가 보장되는 자동화 연마 가공 시스템 장비 개발
 - X, Y, Z 축을 이용한 직교 장치의 연마 가공 구조 시스템을 개발하여, Setting Position에 위치한 가공물을 작업대에 자동화 이송 및 수평도를 자동화로 맞추어, 연마 가공에 높은 정밀도로 진행될 수 있는 시스템을 개발하였다. 수작업을 통해 가공 되었던 연마 공정을 자동화함으로써, 인력남비 손실을 방지하고 작업 효율을 높일 수가 있었다.
가공 완료에 대하여 최종적으로 가공에 대한 평탄도 측정 장비 개발

평탄도 측정 센서인 레이저 측정 장비를 이용하여, 작업 전 Setting 된 Insert Steel의 좌면의 평탄도를 측정을 하도록 하였다. 측정 시작점부터, 최종 지점까지 레이저 두 점이 지나가며, 높낮이를 측정해 가장 낮은 부분과 가장 높은 부분의 데이터를 가지고 가장 낮은 부분을 기준으로 하여 연마 가공 진행되도록 시스템을 구성하였다.

[그림] 연도별 Insert Steel 좌면 가공 수

[그림] 자동화연마기 배치도
[그림] 자동화 연마기 설계도

[표] 자동화 연마기 공정 순서

- 간트리를 이용하여 Insert Steel의 평탄도를 맞추고 작업 상자를 마그네틱 위로 CLAMPING 하는 공정 단계
- 레이저 (2 point) 센서로 LOADING 단계에서 맞춘 평탄도를 측정하는 공정 단계
- 원하는 가공 조건으로 Insert Steel 올 연마 가공하는 단계
- Insert Steel의 가공이 완료된 작업 상자를 이송시켜 다음 작업을 준비하는 단계
○ 설비 도입결과

<table>
<thead>
<tr>
<th>시 설 명</th>
<th>규격</th>
<th>수량</th>
<th>용도</th>
<th>계획자금</th>
<th>소요자금</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL UNIT</td>
<td>SET</td>
<td>1</td>
<td>컨트롤</td>
<td>44.0</td>
<td>42.7</td>
</tr>
<tr>
<td>SIEMENS NC</td>
<td>SET</td>
<td>1</td>
<td>제이</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>SPINDLE UNIT ASS’Y</td>
<td>SET</td>
<td>1</td>
<td>가공 및 이송</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>BED ASS’Y</td>
<td>SET</td>
<td>1</td>
<td>가공 및 이송</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>X-Z UNIT ASS’Y</td>
<td>SET</td>
<td>1</td>
<td>가공 및 이송</td>
<td>40.0</td>
<td>39.7</td>
</tr>
<tr>
<td>LOAD’G & UNLOADING</td>
<td>SET</td>
<td>1</td>
<td>프레임</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

- 설비 도입 전 & 후

자동화 연마 장비 도입 전

자동화 연마 장비 도입 후
3. 성과지표 및 달성도

○ 본 사업을 통해 얻을 수 있는 성과

<table>
<thead>
<tr>
<th>평가항목</th>
<th>단위</th>
<th>기준</th>
<th>목표치</th>
<th>실적치</th>
<th>달성률 (%)</th>
<th>비고 (평가방법)</th>
</tr>
</thead>
<tbody>
<tr>
<td>생산성</td>
<td>UPH</td>
<td>1</td>
<td>3</td>
<td>3.3</td>
<td>110</td>
<td>외부기관확인서</td>
</tr>
<tr>
<td>평탄도 편차</td>
<td>mm</td>
<td>±0.1</td>
<td>±0.05</td>
<td>±0.009</td>
<td>182</td>
<td>공인기관성적서</td>
</tr>
<tr>
<td>평탄도 측정 시간</td>
<td>sec</td>
<td>-</td>
<td>20</td>
<td>16.489</td>
<td>118</td>
<td>외부기관확인서</td>
</tr>
<tr>
<td>가공 대상물 경도</td>
<td>HrC</td>
<td>48~50</td>
<td>50 이상</td>
<td>56.48</td>
<td>113</td>
<td>공인기관성적서</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>참고지표</th>
<th>건수</th>
<th>항목</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>지식재산권</td>
<td>2건</td>
<td>1. "프레스 금형용 조립 블록의 바닥면 평탄도 검사 방법" 특허 등록</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. "레이저 트리밍 공정이 용이한 향스템핑 성형 방법" 특허 등록</td>
<td></td>
</tr>
</tbody>
</table>

*1. 생산성: 외부기관(대구기계부품연구원) 입회하여 시간당 생산량 UPH (Unit per Hour) 측정 수행
*2. 평탄도 편차: 엔마 가공된 Insert Steel 카핀의 위치 별 평탄도 측정 수행
 ※ 표면조도: 평탄도의 목표치가 표면조도에 대한 측정 수행 대비
*3. 평탄도 측정 시간: 외부기관(대구기계부품연구원) 입회하여 평탄도 측정 시간 측정 수행
*4. 가공 대상물 경도: 열처리 후의 Insert Steel 제품을 절단하여 KS B 0811에 따라 경도 시험 수행

[평탄도 편차] [가공 대상물 경도]

[생산성] [평탄도 측정 시간]
<table>
<thead>
<tr>
<th>분 류</th>
<th>결과 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>비용감소 효과</td>
<td>정량 결과</td>
</tr>
<tr>
<td>목표</td>
<td>- 기존 수작업 공정으로 바닥면을 연마 가공하는 부분을, 자동화 공정 도입으로 인하여, 인건비 감소 효과</td>
</tr>
<tr>
<td>실적</td>
<td>- 생산성 향상으로 인하여, 급행 생산 Cycle Time 40분 감축 가능</td>
</tr>
<tr>
<td>고용적 효과 (인력절감 등)</td>
<td>정성적 기술</td>
</tr>
<tr>
<td>목표</td>
<td>1명 - 수 작업으로 1개의 Insert Steel 당 1명의 작업자가 동원되어 최소 1시간 이상 결률체 우면 가공 작업 부분을 신 장비 도입으로 자동화 연마가 가능하게 됨으로써, 인력남비 절감</td>
</tr>
<tr>
<td>실적</td>
<td>1명 - Insert Steel 수 작업 진행 시, 최소 1시간이상의 작업이 진행되었으나, 자동화 장비를 통해 기존의 작업 대비 최소 20분에 한 개의 Insert Steel 착면의 연마 가공이 완료 되므로, 약 110%의 생산성 향상 효과 달성</td>
</tr>
<tr>
<td>생산시간 감소효과</td>
<td>정밀도 제고효과</td>
</tr>
<tr>
<td>목표</td>
<td>±0.05mm - Insert Steel 좌면 수 작업 가공 시 작업자의 숙련도에 따라 연마 가공에 대한 편차가 달라지므로, 자동화 연마 장비를 통해 보다 정밀하고 일정한 가공 품질이 보장되므로 안정화 가능</td>
</tr>
<tr>
<td>실적</td>
<td>±0.009mm</td>
</tr>
<tr>
<td>안전도 제고효과</td>
<td>목표</td>
</tr>
<tr>
<td>실적</td>
<td>- 최소 약 20kg 무게가 되는 Insert Steel을 이송 및 가공 정도 확인 공정을 자동화 장비로 대체함으로써 안전사고 예방 및 작업자의 편의성 제공</td>
</tr>
</tbody>
</table>